1219. Chemistry of Soil Minerals. Part II.¹ Reactions of Phosphates with Kaolin and Faujasite

By R. M. BARRER and D. J. MARSHALL

Under hydrothermal conditions up to 350° kaolin reacted with phosphates and hydroxides of Na, K, and NH₄; and sodium near-faujasite with phosphates of Na and NH₄. From both aluminosilicates a range of species was obtained which were largely aluminophosphates, and often new phases. These have been characterised by X-ray powder photography. In addition aluminosilicates were readily prepared (potash felspar, albite, kalsilite, kaliophilite, muscovite mica, phosphatic and basic cancrinite, basic sodalite, and the zeolites analcite, NaP and NaS). Kaolin was a versatile source of such compounds.

In the previous $Paper^1$ it was found that phosphate-rich hydrous aluminosilicate gels crystallise as separate aluminosilicates and aluminophosphates, with no observable isomorphous substitutions. Although reactions of aqueous solutions of phosphates of Na,

¹ Part I, R. M. Barrer and D. J. Marshall, preceding Paper.

K, NH₄, and Mg with several soil minerals have previously been shown to produce a variety of alumino- and ferric phosphates,²⁻⁶ no aluminosilicates were identified. A recent Review ⁷ has, however, summarised a wide range of hydrothermal transformations of analcite (Na₂O,Al₂O₃,4SiO₂,2H₂O) to other aluminosilicates, and of converse transformations yielding analcite. Moreover kaolinites, micas, and other clay minerals have been synthesised in various ways from gels and other products, and are known to yield other species in their turn, under hydrothermal conditions.⁷ It was therefore thought of interest to examine the reactions of kaolin, and of the alkali-rich zeolite, synthetic faujasite, with aqueous media predominantly rich in phosphates. The results are now reported.

EXPERIMENTAL

Pure kaolin was supplied by English Clays, and the synthetic near-faujasite (Sieve X) by Linde Air Products. The hydrothermal reactions of these phases were studied using apparatus already described,¹ and the crystalline products were examined by microscope, electron microscope, X-ray diffraction, and in a limited number of cases by chemical analysis.

In experiments at 110° and below, 0.4-0.5 g. of kaolin or of faujasite were added to 6-10ml. of water. Above this temperature the same weight of mineral was usually added to 6 or 7 ml. of water. In each case the required amount of phosphate or of alkali was added. The reactions at 110° or below were normally effected in sealed glass tubes and those above 110° in stainless steel autoclaves.

Reactions of Kaolin with Potassium Phosphates and Hydroxide.—Results of some experiments in which potassium phosphates and hydroxide interact with kaolin are summarised in Table The K-bearing solutions readily yielded such aluminosilicates as potash felspar (K₂O,Al₂O₈,6SiO₂), kalsilite (K₂O,Al₂O₃,2SiO₂), and kaliophilite (K₂O,Al₂O₃,2SiO₂). Kalsilite was a common product from more alkaline media (KOH or K_3PO_4 solutions). Over shorter times K_3PO_4 solutions yielded kaliophilite sometimes admixed with kalsilite or mica. Potash felspar appeared regularly with acid potassium phosphate.

Among the aluminophosphates or phosphates the commonly occurring species was H, of composition $K_2O_3Al_2O_3, 2P_2O_5, 5H_2O$, and previously characterised by Haseman *et al.*² The remaining species M, T, and K could not be identified with phosphates previously crystallised^{2, 8-11} but their characteristic X-ray spacings are given in Table 2. M and T, which are probably aluminophosphates, result from low-temperature reactions of long duration, and both on ignition to 900° recrystallised to K. The aluminosilicates are thus in general hydrothermal products at higher temperatures, but H, M, and T are products of low-temperature reactions. This distinction suggests that at low temperatures the kaolin lattice decomposed to give aluminium hydroxide and silica of which only the alumina then reacted (with phosphate). Only when the medium is very alkaline or the temperature is high does the silica react.

Recrystallisations involving KH₂PO₄ and kaolin resulted in corrosion of the autoclaves, giving additional and mostly iron-bearing products. For example, in one of the runs of Table 1, the crystals were at least partially separated by decantation and hand picking. Five species were apparent: potash felspar; light brown, opaque crystals with well-grown faces (U); a few very dark brown crystals with less developed, glossy faces (V); small bright green crystals of lath-like habit (W); and large, well-grown white crystals, often in spherulitic clusters. The d-spacings are given in Table 3. Bracketed coincidences between certain spacings of U and Vsuggest that V is a mixture of two phases.

Despite the diversity of its reactions the kaolin also showed considerable low-temperature stability toward phosphates. Some situations where kaolin did not recrystallise are: K₃PO₄ (8 g., 4 g., 2 g., and 1 g. per 10 ml. H₂O) at 150° for 4, 8, and 53 days; K₃PO₄ (1 g. in

- ² J. F. Haseman, E. H. Brown, and C. D. Whitt, Soil Sci., 1950, 70, 257.
- M. C. Ford, J. Amer. Soc. Agron., 1933, 25, 134.
 L. E. Ensinger, Soil Sci. Soc. Amer. Proc., 1948, 13, 170.

- L. E. Ensinger, Soil Sci. Soil. Amer. Proc., 1939, 4, 170.
 P. R. Stout, Soil Sci. Soc. Amer. Proc., 1939, 4, 177.
 P. F. Low and C. A. Black, Soil Sci. Soc. Amer. Proc., 1947, 12, 180.
 E.g., R. M. Barrer and E. A. D. White, J., 1952, 1561.
 J. F. Haseman, J. R. Lehr, and J. P. Smith, Soil Sci. Soc. Amer. Proc., 1950, 15, 76.
 J. P. Smith and W. E. Brown, Amer. Mineralogist, 1959, 44, 138.
 F. d'Yvoire, Bull. Soc. Chim. de France, 1961, 1762, 2277, 2283.
 F. d'Yvoire, Bull. Soc. chim. France, 1962, 1224, 1237.

10 ml.) at 105° for 140 days; K_2HPO_4 (5 g. in 10 ml.) at 105° for 4 and 32 days; $(NH_4)_2HPO_4$ (5 g. in 10 ml.) at 110° for 7 days; NH_4OH (6 ml. of 0.880 NH_3 and 6 ml. H_2O) at 110° for 17 days; H_2O at 170° for 3 days. However, although new crystalline phases did not appear in the above instances, there was sometimes weakening of the powder reflections of kaolinite, indicating attack on the crystals. Moreover after still longer times recrystallisation was sometimes observed (e.g., species M in Table 1).

TABLE	1
T T T T T T T T T T	-

Reactions of kaolin with K-bearing solutions

	Solution and		Time	
Product	composition	Temp.	(days)	Remarks
Kalsilite	KOH (2.5 g. in 7 ml.)	350°	2	
	K_3PO_4 (7 g. in 7 ml.)	350	2	
	$K_{3}PO_{4}$ (3.3 g. in 8 ml.)	350	2	
	K, PO, ()	300	2	
	$K_3PO_4(1, 1, 1)$	250	7	
	$K_{3}PO_{4}(1, 1, 1)$	350	7	
	$K_3PO_4(1,1,1,1)$	350	7	After ignition of product
	$K_{3}PO_{4}(1, 1, 1)$	250	2	,, ,, ,,
Kalsilite and kalio-	K.PO. (7 g. in 7 ml.)	350	1	
philite	K,PO, ()	300	ī	
1	$K_{\bullet}^{\bullet}PO_{\bullet}^{\bullet}($	250	2	After treatment with dilute HCl
Kaliophilite	$K_{2}PO_{4}$ (7 g. in 7 ml.)	200	6	After product treated with dilute HCl
Kaliophilite and muscovite mica	$K_{3}PO_{4}$ (7 g. in 7 ml.)	200	2	After product treated with 2N-HCl
Potash felspar	KH ₂ PO ₂ $(2.5 \text{ g}, \text{ in } 7 \text{ ml})$	250	3	
	$KH_{2}PO_{4}(1,,)$	300	3	
	$KH_{2}PO_{4}(2.8 \text{ g}, \text{ in } 7 \text{ ml})$	300	7	
	$KH_{2}PO_{4}(2.5 \text{ g. in } 7 \text{ ml.})$	350	3	Acid washed product (fine fraction)
	$KH_{2}PO_{4}(1, 1, 1, 1)$	300	3	······
	KH,PO, ()	250	3	
	$\operatorname{KH}_2\operatorname{PO}_4($, , ,)	350	3	,, ,, ,, (coarse fraction;
	KH ₂ PO ₄ (3·2 g. in 8 ml.)	300	2	With several other species (U, V, W, X)
Phase with some	KOH $(0.8 \text{ g.}) + \text{KH}_2\text{PO}_4$	350	1	
resemblance to	(3.5 g.) in 7 ml.			
Telspar	$(0.8 \text{ g.}) + \text{KH}_2\text{PO}_4$ (3.5 g) in 7 ml	300	1	
	$KOH (0.8 g.) + KH_{\bullet}PO_{\bullet}$	250	1	
	(3.5 g.) in 7 ml.			
Cancrinite (K-rich)	KOH (2 g. in 10 ml.)	110	17	Other species also present
Aluminophos-	KH ₂ PO ₄ (4 g. in 10 ml.)	105	85	Small spherulites
phate \hat{H}	KH, PO, (, ,)	105	97	
1	$KH_{2}PO_{4}$ (2 g. in 10 ml.)	105	97	
	$\operatorname{KH}_{2}\operatorname{PO}_{4}$ (0.2 g. in 10 ml.)	105	140	Some kaolin still unreacted
Species M	K ₃ PO ₄ (8 g. in 10 ml.)	105	85	
	$K_{3}PO_{4}$ (4 g. in 10 ml.)	105	85	Larger particle fraction
Species T	KH ₂ PO ₄ (8 g. in 10 ml.)	105	85	Large spherulites
-	$\operatorname{KH}_{2}\operatorname{PO}_{4}(, , ,)$	105	53	~ .
Species K	KH ₂ PO ₄ (8 g. in 10 ml.)	105	85	Larger particles heated to 900°

Reactions of Kaolin with Sodium Phosphates and Hydroxide.—Reactions between kaolin and sodium phosphates and hydroxide are summarised in Table 4. Solutions of Na_3PO_4 were sufficiently alkaline to produce phosphatic cancrinite very readily in the range 170 to 350°. In addition a zeolite of the chabazite family $(NaS)^{12}$ appeared at about 100°. Kaolin also reacted with caustic soda to form basic cancrinite or at lower temperatures, basic sodalite. The synthetic zeolite designated NaP_1^{12} which does not appear to have a natural counterpart, and NaS, were also readily formed.

The presence of phosphate in a typical phosphatic cancrinite was demonstrated by washing the crystals carefully with warm water until all extraneous phosphate was removed. Prolonged washing with hot water was avoided since it converted the cancrinite into an amorphous

¹² R. M. Barrer, J. W. Baynham, F. W. Bultitude, and W. M. Meier, J., 1959, 195.

	d-Spacings of H, M, T , and K														
H		M	[T	•	Î K		H		M	T	Т		K	•
d (Å)	Int	d (Å)	Int	d (Å)	Int	d (Å)	Int	d (Å)	Int	d (Å)	Int	d (Å)	Int	d (Å)	Int
6.87	s	15.93	m	11.01	s	6.99	vvw	$2 \cdot 293$	w	1.609	mw	2.64	mw	2.153	mw
6.63	w	7.45	vvw	8.52	mw	6.30	w	$2 \cdot 229$	w	1.551	mw	2.61	vw	2.108	mw
5.50	m	6.35	vw	5.82	w	6.00	vw	2.217	vw	1.538	w	2.59	w	2.059	m
4.89	m	5.06	mw	5.61	mw	5.67	ms	2.158	w	1.522	w	2.55	w	2.014	mw
4.83	w	4.14	s	4.49	vw	5.19	vw	2.125	w	1.500	vvw	2.51	vw	1.994	w
4.57	vw	4.10	w	4.31	vw	5.10	vvw	2.091	ms	1.459	vw	2.50	vw	1.946	$\mathbf{v}\mathbf{w}$
4.32	vw	3.97	w	4.26	vw	4.13	w	2.040	w	1.378	vvw	$2 \cdot 493$	vw	1.926	m
4.28	w	3.87	vs	4.24	vw	4.09	m	2.026	vw	1.363	vvw	2.473	vw	1.888	vw*
4.15	m	3.67	ms	4.06	m	3.85	s	1.972	$\mathbf{v}\mathbf{v}\mathbf{w}$			$2 \cdot 460$	vw	1.876	vvw
3.94	vw	3.58	mw	3.96	w	3.61	vvw	1.961	vw			2.366	vw	1.865	vvw
3.91	vw	3.48	s	3.86	m	3.58	w	1.941	w			2.332	vvw	1.846	$\mathbf{m}\mathbf{w}$
3.81	vw	3.18	s	3.76	m	3.51	vvw	1.908	$\mathbf{v}\mathbf{v}\mathbf{w}$			2.270	vw	1.802	w
3.32	w	3.08	w	3.70	vw	3.45	mw*	1.875	$\mathbf{v}\mathbf{v}\mathbf{w}$			2.230	vw	1.779	vw
3.22	s	3.02	vw	3.62	m	3.40	mw*	1.834	ms			2.208	vw	1.744	w
3.16	m	2.92	ms	3.46	m	3.32	ms	1.802	vvw			2.184	vw	1.733	w
3.09	mw	2.90	ms	3.33	$\mathbf{v}\mathbf{v}\mathbf{w}$	3.16	vvw	1.782	vvw			2.171	vw	1.711	mw
3.07	vvw	2.87	m	3.25	vs	3.08	m	1.768	mw			2.138	vvw	1.695	vw
3.04	vw	2.64	m	3.22	mw	3.03	m	1.719	w			2.112	w	1.661	vvw
2.92	w	2.54	m	3.19	vvw	3.01	vvw	1.688	w			2.093	w	1.651	vvw
2.91	ms	2.53	w	3.16	w	2.97	m	1.646	w			2.084	$\mathbf{v}\mathbf{w}$	1.632	w
2.79	ms	2.473	mw	3.14	vw	2.93	s	1.630	w			2.031	w	1.582	vw
2.75	vw	$2 \cdot 340$	mw	3.12	w	2.89	vs	1.619	m *			1.914	w	1.560	vvw
2.69	vw	2.318	mw	3.09	w	2.60	vvw	1.588	vw			1.882	w	1.524	vvw
2.64	vw	2.294	mw	3.02	w	2.58	mw	1.572	vvw			1.852	mw	1.513	m
2.59	ms	$2 \cdot 162$	vw	3.01	w	2.483	mw	1.522	m *			1.825	vvw	1.486	vw
2.56	w	$2 \cdot 128$	m	2.96	w	2.419	mw	1.499	vw			1.813	vw	1.467	mw
2.55	m	$2 \cdot 090$	w	2.94	s	2.372	m	1.462	vvw			1.784	vvw	1.434	vvw
2.50	vw	2.075	w	2.83	s	2.344	vvw					1.742	vvw	1.353	$\mathbf{v}\mathbf{w}$
2.446	w	1.815	mw	2.78	w	2.309	w					1.728	vw		
2.421	vw	1.790	w	2.74	vw	2.286	vw					1.706	vw		
2.347	$\mathbf{v}\mathbf{v}\mathbf{w}$	1.721	vvw	2.69	vw	2.273	mw					1.507	w		
2.326	vw	1.687	mw	2.66	vw	2.260	w		* Di	ffuse.		1.490	w		
							Tabl	Е З							

Products	associated	with	potash	felspar	of	Table	1
	37		T	r		17	

U	-	V	-	W	•	X		U	r	V	•	И	7	X	
d (Å)	Int	d (Å)	Int	d (Å)	Int	d (Å)	Int	d (Å)	Int	d (Å)	Int	d (Å)	Int	d (Å)	Int
7.89	mw	7.55	w	13.31	vw	6.19	w	1.687	w	1.433	vw	2.335	w	2.303	w *
5.22	s	7.09	m	6.63	s	5.89	ms	1.623	w			2.284	w	2.269	$\mathbf{m}\mathbf{w}$
5.05	vvw	5.55	w	5.31	vvw	5.04	vw	1.577	w			2.256	vvw	2.249	w
4.33	w	4.69	w	5.13	vw	4.24	ms	1.503	w			2.221	w	2.178	$\mathbf{v}\mathbf{w}$
4.16	m	4.48	mw	4.91	w	4.20	vw	1.474	vvw			2.182	vvw	2.145	mw
3.31	m	4.08	vvw	4.45	w	3.90	mw	1.458	vvw			2.155	vw	$2 \cdot 122$	w
3.26	ms	3.70	w	4.30	m	3.85	m	1.431	vvw			$2 \cdot 123$	w	2.077	m
3.16	w	3.41	m	4.23	ms	3.79	w	1.373	vvw			2.096	vvw	2.065	w
3.12	ms	3.37	vvw	4.11	ms	3.63	m					1.967	vvw	2.009	$\mathbf{v}\mathbf{w}$
3.04	m	2.98	vvw	4.00	m *	3.57	m					1.767	mw	1.988	w
3.01	s	2.91	ms	3.81	vvw	3.52	m					1.697	vw	1.952	w
2.95	mw	2.88	m	3.74	vvw	3.46	m					1.569	vw	1.875	$\mathbf{v}\mathbf{w}$
2.80	w	2.74	w	3.59	vw	3.33	vw					1.536	mw	1.857	w
2.77	vw	2.64	vw	3.47	m	3.29	vvw					1.520	w	1.802	w
2.66	m	2.60	w	3.32	w	3.23	ms					1.435	w	1.795	vvw
2.52	m	2.496	mw	3.16	m	3.14	vs							1.785	w
2.461	ms	$2 \cdot 458$	mw	3.13	m	3.09	mw							1.731	m
2.324	vvw	$2 \cdot 421$	mw	3.08	m	2.99	vs							1.716	w
2.250	vw	2.304	vvw	3.05	w	2.92	vvw							1.703	m
2.193	vw	2.279	w	2.99	\mathbf{ms}	2.84	ms							1.687	vw
2.158	mw	$2 \cdot 231$	vw	2.97	w	2.77	vvw							1.631	$\mathbf{m}\mathbf{w}$
2.132	vw	2.177	w	2.82	m	2.74	m							1.614	$\mathbf{v}\mathbf{w}$
2.027	m	2.090	vvw	2.77	vw	2.67	w							1.599	vw
2.011	vvw	$2 \cdot 052$	vvw	2.74	w	2.62	vvw							1.588	vw
1.918	vw	2.040	vvw	2.70	vw	$2 \cdot 58$	w							1.569	mw
1.892	vvw	1.904	vvw	2.66	w	$2 \cdot 53$	w							1.523	vw
1.874	w	1.773	vvw	2.61	vvw	2.491	$\mathbf{m}\mathbf{w}$							1.201	mw
1.846	vw	1.652	vw	$2 \cdot 58$	vvw	2.453	vvw							1.481	w
1.833	vvw	1.547	vw	2.56	s	2.423	w							1.456	w
1.818	vw	1.523	$\mathbf{v}\mathbf{w}$	2.448	mw	2.378	vvw				~			1.427	m
1.803	vw	1.459	vw	2.359	w	2.320	w			* Dif	tuse.				

TABLE 4

Reactions of 0.5 g. kaolin with Na-bearing solutions

	Solution and its		Time	
Product	composition	Temp.	(days)	Remarks
Phosphatic	Na_3PO_4 (4 g. in 7 ml.)	350°	3	All these products were extracted with hot
cancrinite	$Na_{3}PO_{4}(, , ,)$	300	3	water till only a slight PO_4 test was
	Na ₃ PO ₄ (,, ,,)	250	3	observed
	$Na_{3}PO_{4}(,,,,)$	170	3	
	$Na_{3}PO_{4}(,,,,)$	350	6	
	$Na_{3}PO_{4}(,,,,)$	300	6	
	$Na_3PO_4(,,,,,)$	250	6	
	$Na_{3}PO_{4}(,,,,,)$	170	0	
	Na_3PO_4 (3.5 g. in 7 mi.)	250	4	
	$N_{a_3}rO_4(,,,,,)$	250		
	$N_{3}IO_{4}(,,,,,)$	170	4	
	Na PO. $($	170	- 11	
	Na ₂ PO, $(4 \text{ g}, \text{ in } 7 \text{ ml.})$	250	33	
	$Na_{3}PO_{4}(1, 0, 1, 1, 1, 1)$	170	33	
Basic can-	NaOH (mod concn 7 ml)	350	3	Large crystals with sodalite
crinite	NaOH (170	3	Large erystale, with toutine
Basic sodalite	NaOH (mod concn 7 ml)	170	3	With cancrinite
Dusie sounite	NaOH $(2.5 \text{ g in } 10 \text{ mL})$	100	10	With <i>zeolite</i> NaS
	NaOH (5 g, in 10 ml.)	100	$\tilde{10}$	
	Glycerol (10 ml.) Na_3PO_4 (5 g.)	105	48	
Zeolite NaP	NaOH (0.5 g. in 10 ml.)	100	10	Tetragonal variety
	NaOH (,, ,,)	100	17	с <i>г</i>
Zeolite NaS	$Na_{3}PO_{4}$ (4 g. in 10 ml.)	110	17	With unchanged kaolin
	NaOH (2 g. in 10 ml.)	110	17	
	$Na_{3}PO_{4}$ (10 g. in 10 ml.)	100	10	With unchanged kaolin and species E
	NaOH (3·75 g. in 10 ml.)	100	17	
	Na ₃ PO ₄ (10 g. in 10 ml.)	100	24	With unchanged kaolin and species E
Albite	$Na_{2}HPO_{4}$ (2.5 g. in 7 ml.)	250	3	Then boiled with aqua regia $+ 1$ vol. H_2O for 15 min.
	$Na_2HPO_4($,, ,,)	300	3	Then acid washed and dried at 105°
Aluminophos-	Na ₂ HPO ₄ (2.5 g. in 7 ml.)	350	3	With species F
phate A	$Na_{2}^{\dagger}HPO_{4}^{\dagger}(\dot{\eta}, \eta, \eta)$	300	3	With species B
-	$Na_2HPO_4(1, 1, 1)$	250	3	With species B
	$Na_{2}HPO_{4}(,,,,)$	170	3	
	$Na_{2}HPO_{4}(,,,,)$	240	13	
	$Na_2HPO_4(1, 1, 1)$	310	>6	Accompanied by other products, one
	$Na_{2}HPO_{4}(,,,,,)$ $Na_{2}HPO_{4}(,,,,,)$	$\begin{array}{c} 240 \\ 240 \\ \end{array}$	17 18	similar to albite
Species F	Na ₂ HPO ₄ (2·5 g. in 7 ml.)	350	3	With species A
Species B	Na ₂ HPO ₄ (2.5 g. in 7 ml.)	300	3	With A
-	Na_2HPO_4 (,, ,,)	250	3	With A
Species E	Na ₃ PO ₄ (10 g. in 10 ml.) Na ₃ PO ₄ (,, ,,)	100 100	$\begin{array}{c} 10 \\ 24 \end{array}$	With Na S , and unchanged kaolin With Na S , and unchanged kaolin

TABLE 5

Reactions of 0.5 g. kaolin with $(NH_4)_3PO_4$ solutions

	Composition of phosphate		Time	
Product	solution	Temp.	(days)	Remarks
Species G	4 g. in 6 ml. $H_{2}O$	350°	4	
Species I	4 g. in 6 ml.	$\begin{array}{c} 300 \\ 250 \\ 200 \end{array}$	6 ·	With another phase soluble in dilute HCl. I is insoluble
Species J	4 g. in 6 ml.	$\frac{200}{200}$	$\frac{6}{2\frac{1}{2}}$	Insoluble in dilute HCl
Species K	4 g., and 1 g. catechol, in 7 ml	250	4	After ignition of product

product. Analysis of the washed phosphatic cancrinite gave 3.92% of phosphorus, and the weight loss on ignition was 6.0%. If it is assumed that this loss is due to water and that Na⁺ is the only cation present, these results agree with the formula

 $6(\mathrm{NaAlSiO_4})1{\cdot}47\mathrm{Na_3PO_4}, 3{\cdot}9\mathrm{H_2O}$

It is interesting that from Na₃PO₄ solutions cancrinites, but not sodalites, appeared, in accordance with results of Guth ¹³ at 250°. Here aluminosilicate gels in presence of multivalent anions yielded only cancrinites; sodalite formed when OH⁻ or F⁻ were present. In phosphatic cancrinite the phosphate is present as an intercalated guest species, not as a substitute for Al or Si.

The only phosphate observed when Na_3PO_4 solutions reacted with kaolin was E. That this is a phosphate or aluminophosphate is indicated because it appeared only when phosphate but not when sodium hydroxide was the mineralising solution. In each case the zeolite NaS was also formed.

If the solution contained Na_2HPO_4 the reaction pattern changed. Zeolites and felspathoids now failed to appear; only albite $(Na_2O,Al_2O_3,6SiO_2)$ was obtained at the higher temperatures (250 and 300°). On the other hand several phases A, B, and C were obtained which had been synthesised previously from phosphate-bearing, hydrous aluminosilicate gels.¹ The X-ray diffraction spacings of E are recorded in Table 6.

TABLE 0	Τ	ABLE	6
---------	---	------	---

			*	0					
E		G		I		J		L	
d (Å)	Int	<i>d</i> (Å)	Int	<i>d</i> (Å)	Int	d (Å)	Int	d (Å)	Int
[4.12] *	ms	8.88	s	5.65	ms	5.13	s	11.44	m
³ ·97	vw	4.78	w	4.11	w	4.46	vvw	8.30	vw
3.18	ms	4.23	m	2.98	S	3.34	vw	7.90	mw
2.86	vvw	3.39	mw	2.96	m	3.07	mw	6.12	vw
2.84	vw	2.83	s	2.497	w	2.96	m	5.94	vw
2.69	m	2.417	w	$2 \cdot 468$	mw	2.56	m	5.74	w
2.60	m	2.349	w	2.154	w	1.937	vvw	5.42	mw
2.120	vw	2.296	w	$2 \cdot 127$	w	1.707	vw	5.30	mw
1.972	vw	2.135	vw	2.010	vw	1.529	vvw	5.10	s
1.402	m	1.897	vvw	1.975	w	1.494	vvw	4.52	\mathbf{ms}
[1.301]	m			1.877	w	1.418	vvw	4.34	w
-				1.856	w			3.82	w
				1.802	mw			3.74	mw
				1.669	ms			3.29	w
				1.514	mw			3.26	w
				1.480	w			$3 \cdot 20$	vvw
				1.374	vvw			3.17	vw
				1.366	vw			3.06	s
				1.355	vvw			2.95	m
								2.92	w
								2.56	mw
								2.004	w
								1.938	vvw
								1.706	w
								1.599	vw
								1.529	w
								1.418	vvw
								1.365	vvw
		* Spacing	s in bra	ackets may b	elong to	another spec	cies.		

d-Spacings of E, G, I, I, and L

Reactions of Kaolin with Ammonium Phosphate Solutions.—In all the experiments conducted between 200 and 350° , of which representative examples are summarised in Table 5, the kaolin completely reacted and bulky products were obtained. G and I were the result of attack by ammonium phosphate upon the autoclaves, since they appeared also in absence of kaolin. They are therefore iron phosphates or ammonium iron phosphates. G appeared as pale green, very thin flakes readily soluble in dilute hydrochloric acid. I consisted of well-formed, deep green, chunky crystals. An additional species, also formed by direct attack on the autoclaves, occurred in minor amounts as clear, yellow prismatic or cuboid crystals.

When kaolin was present, J (Table 5) was an additional product. The catechol referred to was intended to complex the silica. Catechol (1 g. in 7 ml.) did not, however, fully decompose kaolin after 4 days at 250°, nor produce recrystallisation, but was itself largely decomposed.

¹³ J. L. Guth, Thesis. Univ. of Strasbourg, June 1964.

Product

Analcite

Table	c 7	
ar-fau j a	site w	ith Na- and NH_4 -bearing solutions
	Time	
Temp.	(days)	Remarks
250°	3	No other product
250	6	
300	2	
250	2	
200	2	In all cases with species A
300	7	
250	7	
200		
350	2	With A
350	2	With albite

Reactions of 0.5 to 0.4 g. of Na-ne

Solution and its

composition

Na₃PO₄ (7 ml. sat. solution) Na₃PO₄ (4 g. in 6 ml.)

> ,, ,,

,, ,,

,,

)

Water only

Na₃PO₄

Na₃PO₄ (

 Na_3PO_4 (

	Na ₃ PO ₄ (,, ,,)	250	7	
	Na ₃ PO ₄ (,, ,,)	200	7	j
Albite	Na ₃ PO ₄ (4 g. in 6 ml.)	350	2	With A
Aluminophos-	$Na_{3}PO_{4}$ (4 g. in 6 ml.)	350	2	With albite
phate \overline{A}	Na_3PO_4 (7 ml. sat. solution)	250	6]
	$Na_{3}PO_{4}$ (4 g. in 6 ml.)	300	2	
	$Na_{3}PO_{4}(, , ,)$	250	2	
	$Na_{3}PO_{4}(, , ,)$	200	2	In all cases with analcite
	Na ₃ PO ₄ (,, ,,)	300	7	
	$Na_{3}PO_{4}($,, ,,)	250	7	
	Na ₃ PO ₄ (,, ,,)	200	7	j
Species F	Na ₃ PO ₄ (4 g. in 6 ml.)	450	7	With N
Species N	$Na_{3}PO_{4}$ (4 g. in 6 ml.)	450	1	
•	$Na_{3}PO_{4}(, , ,)$	450	7	With F
	$Na_{3}PO_{4}(, , , ,)$	350	7	With R
Species R	$Na_{3}PO_{4}$ (4 g. in 6 ml.)	350	7	With N
Species P	(NH ₄) ₃ PO ₄ (5 g. in 7 ml.)	350	15	Den land a fine to a fine to a fill dilute IIC
-	$(NH_4)_2$ HPO ₄ (4 g. in 7 ml.)	350	$1\frac{1}{2}$	\int Product after treatment with difference
Species J	(NH ₄) ₃ PO ₄ (5 g. in 7 ml.)	300	11	Draduct ofter treatment with dilute HCI
	$(NH_4)_3 PO_4 (, , ,)$	250	11	\int Floquet after treatment with different for
	$(NH_4)_3PO_4$ (,, ,,)	200	5^{-}	With G and R
	$(NH_4)_2HPO_4$ (4 g. in 7 ml.)	300	11	
Species G	(NH ₄), PO ₄ (5 g. in 7 ml.)	200	5	With I and R
-	$(NH_4)_2$ HPO ₄ (4 g. in 7 ml.)	200	5	With R
Species Q	$(NH_4)_2HPO_4$ (4 g. in 7 ml.)	250	5	Product after treatment with mod. concn HCl

After solvent extraction of the product, and ignition of the residue to red heat to complete removal of organic material, the final product was species K. It was also formed by ignition of M and T (Table 1). In an additional experiment a 1:1 molar mixture of aluminium hydroxide and silica gel was treated at 110° for 106 days with $(NH_4)_3PO_4$ (4 g. in 10 ml. water). The product, L, was not typical of any of the previous phosphates.

Though kaolin evidently reacts with $(NH_4)_3PO_4$ rather readily, no aluminosilicates were recognised among the products. The main d-spacings of G, I, J, and L are recorded in Table 6.

Reactions of Na-near-faujasite with Na- and NH₄-phosphate Solutions.—Reactions of the alkali-rich, porous aluminosilicate, synthetic Na-faujasite, were examined to a more limited extent than for kaolin, and as a contrast with kaolin which is non-porous and contains no alkali.

With Na_3PO_4 solutions between 200 and 300° faujasite readily recrystallised to the more compact zeolite, analcite, and at 350° to albite, whereas kaolin equally readily formed phosphatic cancrinite over this whole range of temperatures. Analcite and albite were the only two aluminosilicates observed, and each was always accompanied by the aluminophosphate A. From 350° upwards albite and A were both replaced by the phases F, R, and N. Phases F and A were also formed by reaction with kaolin (Table 3) and from phosphatic alumina-silica gels.1

Just as was the case with kaolin, reaction of faujasite with $(NH_4)_3PO_4$ and $(NH_4)_2HPO_4$ did not yield any identifiable aluminosilicates. However, the formation of phases G, J, P, and Q was observed. Of these G was the product of reaction with the autoclave alone, and Jwas also obtained with kaolin. The d-spacings of the species N, R, P, and Q are given in Table 8.

In a number of low-temperature systems the Na-faujasite (0.4 g) remained unchanged, except for ion exchange: $Na_4P_2O_7$ (0.7 g. in 6 ml.) for 1 and 3 days at 65°; Na_2KPO_4 (0.8 g. in 6 ml.) for 1 and 3 days at 65°; Na_3PO_4 (4 g. in 6 ml.) for 7 days at 65 and 110°; $(NH_4)_3PO_4$ (3 g. in 7 ml.) for 9 days at 65 and 110°; $(NH_4)_2HPO_4$ (4 g. in 7 ml.) for 9 days at 65 and 110°. The

TABLE 8

d-Spacings of species N, R, P, and Q

N		R		P		Q			R		P		Q	
d (Å)	Int	d (Å)	Int	d (Å)	Int	d (Å)	Int	<i>d</i> (Å)	Int	d (Å)	Int	d (Å)	Int	
8.40	mw	8.22	vvw	7.87	w	9.50	ms	2.053	vvw	$2 \cdot 117$	w	1.569	w	
7.22	mw	7.20	ms	6.21	w	6.04	ms	2.023	vvw	2.086	mw	1.545	w	
5.27	w	5.38	s	5.42	vw	5.44	vw	1.883	vw†	2.037	w	1.469	vw	
4.79	s	5.05	vw	5.18	s	5.38	ms †	1.788	vw	1.794	vvw	1.327	vvw	
[4.05]*	w	4.93	mw	4.23	w	5.15	w †	1.764	vw	1.772	vvw			
[3.73]	w	4.53	mw	4 ·14	vw	4.47	vw	1.712	vw	1.727	vw			
[3.60]	s	4.29	mw	4.07	w	3.24	mw	1.679	vvw	1.578	vw			
2.64	s	4.06	m	3.44	w	3.19	w	1.596	w	1.475	vw			
2.60	S	3.68	$\mathbf{v}\mathbf{w}$	3.30	vw	3.09	s	1.527	vw					
$2 \cdot 52$	s	3.52	vw	3.26	vw	3.02	w	1.456	vvw					
2.259	$\mathbf{v}\mathbf{v}\mathbf{w}$	3.27	mw	3.13	vw	2.72	s	1.429	vvw					
2.213	vw	3.20	vs	3.06	w	2.68	w	1.399	vvw					
[2.112]	w	2.92	m	3.02	s	2.63	m	1.372	vw					
[2.049]	w	2.74	m	2.95	vw	2.108	w	1.322	mw					
[1.922]	w	2.68	vw	2.91	vw	2.034	vvw	1.260	vw					
1.736	vw	2.56	vw	2.85	w	2.013	vw	* It is not	cortain	what	her th	e brac	kotod	
1.523	ms	2.53	vw	2.68	s	1.821	vw	d-spacings are th	use of	Noro	fanot	her sn	cies	
1.485	ms	2.383	w	2.58	w	1.665	vw	+ Diffuse	+ Diffue					
1.465	w	2.191	vvw	2.51	ms	1.591	vw	i Dinuse.						

stability of faujasite under ion-exchanging conditions is in line with previous experiments.¹⁴ However, like kaolin, faujasite can be transformed by phosphates into a range of products.

DISCUSSION

When kaolin is first heated to 230-530° and is then admixed with suitable amounts of caustic soda, hydrous silica, and water, the mixtures have been variously crystallised to synthetic near-faujasites (Linde Sieves X and Y), to the synthetic zeolites NaA and NaP, and to basic sodalite.^{15,16} All these reactions were carried out between room temperature and about 100°. In extension and to some degree in contrast with this work, we have found that at 100 and 110° one can prepare NaP, and basic sodalite, and also the zeolite NaS. without prior heat treatment of the kaolin and without additions of extra silica. Some of these zeolites have molecular sieve, catalytic, and selective ion-exchange properties of special interest.

The many phosphates or aluminophosphates which were formed were in surprisingly few instances identifiable with previously prepared phosphorus compounds, whether these were obtained by reaction with soil minerals, or by precipitation reactions of mixed salts. Evidently large numbers of phosphates, aluminophosphates, and iron aluminium phosphates can be prepared. In this and previous 1 work some of these phases were of frequent occurrence (for example, A, F, and H and to a lesser degree B and J).

This work was sponsored by the Agricultural Research Council. One of us (D. J. M.) acknowledges a Senior Research Assistantship.

PHYSICAL CHEMISTRY LABORATORIES, CHEMISTRY DEPARTMENT, IMPERIAL COLLEGE, LONDON S.W.7. [Received, April 26th, 1965.]

¹⁴ E.g., R. M. Barrer, W. Buser, and W. F. Grutter, *Helv. Chim. Acta*, 1956, **61**, 518.
 ¹⁵ B.P. 924,938/1963.

¹⁶ U.S.P. 3,119,659/1964.